d
1l
(s

JOURNAL OF SEISMIC EXPLORATION 7, 45-64 (1998) 45

VISCO-ACOUSTIC FINITE-DIFFERENCE MODELING
IN THE FREQUENCY DOMAIN

B. ARNTSEN, A.G. NEBEL and L. AMUNDSEN
Statoil Research Centre, Postuttak, N-7005 Trondheim, Norway.

(Received June 21, 1997; revised version accepted November 7, 1997)

ABSTRACT

Arntsen, B., Nebel, A.G. and Amundsen, L., 1998. Visco-acoustic finite-difference modeling in the
frequency domain. Journal of Seismic Exploration, 7: 45-64.

Frequency domain finite-difference modeling schemes have the advantage that synthetic data
can be obtained for additional source positions at minimal extra computational cost. Attenuation of
seismic waves can be easily included, and the method is well suited for implementation on a high
performance parallel computer system. We show how to derive and implement an accurate
finite-difference modeling scheme in the frequency domain. In contrast to earlier work, the scheme
employs highly accurate approximations to the spatial derivatives, increasing accuracy and decreasing
computational cost. Numerical solutions for simple models are given illustrating the straightforward
inclusion of visco-acoustic attenuation.

KEY WORDS: visco-acoustic, attenuation, finite-difference, frequency domain, error analysis.

INTRODUCTION

Forward modeling of seismic waves has proven a useful tool in
exploration and production seismology. Numerical solutions of the wave
equation using finite-difference or fine-element methods are particularly useful
as they provide complete synthetic seismograms including multiple reflections,
surface waves and shear waves. Explicit finite-difference schemes formulated
in the time domain have been the preferred methods used by the seismic
industry the last 10-20 years. Examples of these schemes are found in Kelly et
al. (1976), Holberg (1987), Virieux (1986), Levander (1988), Carcione (1992)
and Robertson et al. (1994).
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Finite-difference schemes can also be implemented in the frequency
domain leading to implicit methods which require the solution of large linear
systems of equations. The important advantage is that direct solution methods
are available that allow synthetic data to be obtained for additional source
positions at minimal extra computational cost. Also attenuation of seismic waves
can be easily and accurately modeled, and numerical dispersion due to time
integration is removed. In the past, sufficient computer power has not been
available to allow efficient solutions of large systems of linear equations.
However, given the recent development of cost-effective parallel computer
systems the necessary computational resources are now at hand. Frequency
domain finite-difference methods are particularly well suited for parallel
computer architectures since computations can proceed independently for each
frequency. ‘

Several workers have proposed and implemented frequency domain
finite-difference or finite-element schemes. Among these are Drake (1972),
Marfurt (1984), Pratt (1990) and Pratt and Worthington (1990). We extend the
scheme proposed by Pratt and Worthington (1990) to include optimized
approximations to the numerical derivatives leading to greatly improved
accuracy for coarse grids. This allows the use of either larger models for the
same cost, or reduced computational cost for the same size of models. We use
the optimized differentiators proposed by Holberg (1987). The resulting implicit
finite-difference scheme can be formulated as a system of linear equations. The
matrix formulation of this system requires the inversion of a large sparse matrix,
which reduces to a matrix similar to the one found by Pratt and Worthington
(1990) in the case of a simple, unoptimized classical approximation to the
derivative. Attenuation is included in the scheme by allowing the wave velocity
to be complex. The numerical dispersion introduced by the frequency domain
finite-difference scheme is analyzed by comparing the numerical solution in a
homogeneous medium with an analytical plane-wave solution. We find that the
simple classical approximation to derivatives requires at least 15-20 grid points
per wavelength to be usable; in contrast, the optimized scheme is accurate down
to 2.5 grid points per wavelength. It is also found that the accuracy of the
optimized scheme starts to decrease above approximately 10 grid points per
wavelength.

The next two sections cover the theory and error analysis of the
‘classical’ and optimized finite-difference schemes followed by a section with
numerical examples.

IMPLICIT FINITE-DIFFERENCE SCHEME

We consider a visco-acoustic medium with bulk modulus « and density p.
The two-dimensional (2-D) equations of motion expressed in the frequency
domain can be written ’
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w*p(X,2)u,(X,Z,w) = 0,p(X,z,w) ,

w?o(X,2)u,(X,z,w) = 3,p(X,Z,0) ,
and
p(X,Z,0) = —k(X,Z,w)[0,u(X,Z,0) + 0,0,(X,Z,w)] + 8'(X,Z,w) . 1

Here w is the frequency, u, and u, are the particle displacements in the x- and
z-directions and p is the pressure. s’ is the source of volume injection type.
Note that the bulk modulus « is in general complex and a function of frequency.
Eliminating the particle displacements from the equations in (1), we get the
acoustic wave equation (Suppressing the frequency dependence in the arguments

of p)
[w¥k(x,2)lp(x,2) + 0,[1/p(x,2)]d,p(x,2) + 3,[1/0(x,2)]9,p(x,2)
= s(X,Z,w). (2)

Here s(x,z,0w) = [w¥k(X,z,w)]s’'(X,Z,w). The finite-difference method discretizes
equation (2) on a regular grid and then solves the resulting equations with
respect to the pressure p. We choose a grid with a grid interval equal to Ax in
the x-direction and Az in the z-direction such that

x=(00-DAx,i=1,2,...,N, ,
and 3)
z=(G— DAz,j=1,2, .., N, .
Here N, is the number of grid points in the x-direction, while N, is the number
of grid points in the z-direction. The following shorthand will be used
throughout

p(x,2) = pl(i — DA, — DAz] = p(i,j) . 4)

The derivatives in equation (2) are approximated with centered differences
since this is more accurate than forward or backward differences. The simplest
possible centered difference approximation to a derivative is

axp(xyz)lx—AX/Zz = d;[p(l’.])] = (I/Ax)[p(l3j) - p(l - 1':.])] ’ (5)
and

axp(x,z)|x+Ax/2,z = d:[p(lv_])] = (I/AX)[p(l + 1’.|) - p(l’_])] . (6)

The superscripts — and + indicate that the centered differences use one
grid point behind or in front of the current grid point, respectively. This implies
that the derivative is evaluated halfway between the current grid point and the
grid point in front thereof, or halfway between the current grid point and the
grid point behind it. For increased accuracy equations (5) and (6) can be
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generalized to a higher-order approximation

{
dip(.j) = (1/AX) ), oqlpi + (k—1).j) = pi—K).j] , )

k=1

and

!
dipGi,j) = (1/Ax) Y, aqlpG + kj) — pli — (k=1),)] . @)

k=1

Equations (7) and (8) can be regarded as the convolution of the
differentiator d; or d} defined by the coefficients «,, with the pressure p. The
number of coefficients / is determined by the desired accuracy. The coefficients
oy are computed by an optimization procedure matching the Fourier spectrum

of the differentiators with the spectrum of a perfect differentiator (Holberg,
1987).

Discretizing equation (2) and using equations (7) and (8) for
differentiation in both the x- and z-directions, we get

[0?/p(i,))e2(,)IpG.) + dip™'( — (1/2),j)d5p(.))
+ d;p7'( — (1/2),)dzpGL)) = s@j) ®

where the notations p(x —Ax/2,z) = p(1—1/2,j) and p(x,z—Az/2) = p(i,j—1/2)
have been used. We have also introduced the wave velocity ¢ using the relation
k = p c?. The derivative of the pressure together with the density are now in
effect defined on a separate (‘staggered’) grid displaced Ax/2 with respect to the
regular grid defined in equation (4). The pressure p itself and the bulk modulus
k are defined on the main grid. Fig. 1 illustrates the use of staggered grids.

Equation (9) is a system of simultaneous linear equations relating the
pressure p(i,]) at every grid point to the source s(i,}) and the acoustic parameters
k(1,}) and p(i,j). In order to solve these equations with respect to the pressure
values, it is advantageous to recast equation (9) into matrix form. As a first step
to achieving this, the discretely sampled functions are indexed according to a
new index I given by

I=i+(G-DN,, i=1,..N, j=1,....N,. (10)

Defining new quantities G; = p(i,j) and S; = s(1,j), using equation (10),
the pressure p and the source s are recast as single-column vectors G = (G,,G,,
-Gy ) and S = (54,S,,....,Sy N, )- Equation (9) can be written as a matrix
_equation
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LG =S . (11)

Here L is a square matrix of size N,N, times N,N,. The structure of the matrix
L is in general characterized by a diagonal band of width 4/ — 1 and 4/ — 2
‘fringe’ sub-diagonals. / is here the number of coefficients used in the
differentiators. Below is a sketch of the structure of L in the simple case of
I=1, which correspond to the ‘classical’ finite-difference scheme. Bullets
represent non-zero values.

(12)

The wave velocity is in general assumed to be complex and frequency-
dependent. This allows for a straightforward description of a visco-acoustic
medium, as only the value of the complex velocity changes for different visco-
acoustic models. This, in fact, only changes the main diagonal of L.

Ax
A A
T i | *
] |
| |
1 |
— R IS
Az g~ T T TV ) 4
| [
| I
1 |
A A
| ¥
| I
] |
| I
V——__‘,"—‘——V"—__t—_——_v
| 1
] |
| ]
. A &b .
.p,K‘S
A Dup,p!
Vo dp !

Fig. 1. Staggered grids used for implementing finite-difference scheme.
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Boundary conditions at the edges of the computational grid are of course
of great importance to the detailed form of the solution of equation (11). We
have used the same approach as that described by Pratt (1990). He essentially
uses a modified form of the absorbing boundary conditions introduced by
Clayton and Enquist (1977). '

Equation (11) can now, in principle, be solved using a standard numerical
method for solving linear systems of equations. In general, these solution
methods could be divided into two classes: direct and iterative methods. We
have chosen to use a direct method, which is discussed in the section on
numerical examples.

Causality of the solution cannot be directly enforced in the frequency
domain, since we are, in fact, solving a time-harmonic problem. However, it
is reasonable to assume that the Fourier transform of the corresponding
time-domain problem with zero initial conditions is equal to the solution of
equation (11). The time-domain solution is then recovered by an inverse Fourier
transform.

ERROR ANALYSIS

The discrete form of the wave equation given by equation (9) is an
approximation to the exact wave equation and its solution will consequently
contain errors. The magnitudes of these errors depend on the discretization
intervals Ax and Az and can be interpreted in terms of frequency dependent
phase and group velocities. In this section we investigate these errors by using
an exact plane wave solution for a homogeneous medium

p(i,j) = explik,G — DAx + 1k, — 1Az} , (13)

where i = 1,..,N, and j = 1,...,Nz. k, and k, are the wave numbers in the x-
and z-directions, given by

k, = k sin(f)
and _ (14)
k, = k cos(f) .

The wavenumber is k = w/c, and 6 is the angle between the vertical
direction and the direction of wave propagation. c, is the wave velocity.

Inserting equation (14) into equation (9) with the density constant equal
to 1, and zero source term, one obtains

[w?/c3()IpGL)) + didip@.)) + d7d;pG.j) =0 . (15)
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-Equation (15) leads to the expression

wikey, = cley = JI(k/K)? + (k /K7 (16)
where
21—-1
k/k = [Msin@)2n]WVI—A, — 2 Z A, cos{2mm/Msin(6)}] , 17
m=1
and
) 20-1
k/k = [Mcos(®)2W[—A; — 2 E A_cos{2wm/Mcos(0)}] . (18)
m=1
The coefficients A,, m = 1, ...., 2 — 1 are functions of the

differentiator coefficients oy, k = 1, ...., /. The number of grid points per
wavelength, M, is related to the wave numbers k, and k, by

M = 2#x/(sin(0)k,Ax) ,
and (19)
M = 2x/(cos(0)k,Az) .

Equation (16) is the dispersion relation for the plane wave given by
equation (13) and relates frequency, wave velocity and wave numbers.
Equations (17) and (18) relate the wave numbers to the grid discretization
intervals Ax and Az. If the discretization is perfect and no errors are introduced,
then the right-hand side of equation (16) is identically equal to 1 for all wave
numbers k,_ and k,. Any deviation from 1 is an error and is caused by the
discretization of the wave equation.

Using equations (17) and (18) in equation (16) one gets an expression for
the relative phase velocity c/c, as a function of propagation angle 6 and number
of wavelengths per grid points, M. In the simple case of / = 1, Aj = —2 and
equation (18) reduces to

k/k = M20)VI2 — 2cos{27/Msin(0)}] ,
and (20)
k/k = M2m)\/[2 — 2cos{2w/Mcos(8)}] .

Figs. 2 and 3 show the relative phase velocity c/c, given by equations (16)
and (20) plotted as a function of the number of grid points per wavelength M
and the propagation angle §. The differentiator used in this case corresponds to
the ‘classical’ finite-difference operator. Figs. 4 and 5 show the relative phase
velocity in which the number of coefficients ¢, in the differentiators is 8.
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Figs. 2 and 3 clearly show that the differentiator with length equal to 1
can only be used when the number of grid points per wavelength is larger than
15-20. Comparing the phase velocities for different angles of propagation it is
clear that the error in phase velocity for the differentiator with length 1 is
smallest when the plane wave propagates at an angle of 45 degrees to the
vertical, although this difference is not very large. This is easily understood if
one considers the fact that the number of grid points per apparent wavelength,
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M, and M,, in the x- and z-directions is given by
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M, = M/sin(f) , 21
and
M, = M/cos(d) . (22)

For the same frequency, the number of grid points per apparent

-wavelength (M, and M,) in the x- or z- direction is always larger than (or equal

to) the number of grid points (M) in the direction of propagation. Now, our
finite-difference scheme is designed using differentiators [equation (7)] which
are designed independently along the x- or z-axis. These differentiators perform
best for large values of the number of grid points per apparent wavelength.

Phasc velcity

Phasc velocity
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Fig. 4. Relative phase velocity using differentiators with length / = 8 and angle of propagation 6

= 0 (left) and 8 = 15 (right).
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Fig. 5. Relative phase velocity using differentiators with length [ = 8 and angle of propagation ¢
= 30 (left) and § = 45 (right).
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Hence, errors will be smaller if the direction of propagation is not coincident
with one of the coordinate axes. Figs. 4 and 5 correspond to Figs. 2 and 3,
except that the number of coefficients now used is equal to 8. Note the change
of scale on the vertical axis in Figs. 4 and 5 relative to Figs. 2 and 3. The error
in phase velocity is dramatically reduced, and is less than 0.003 for all values
of the number of grid points per wavelength of practical interest. The error is
an oscillating function for values of M less than approximately 10 grid points
per wavelength, but increases almost monotonically for values of M larger than
10. The error in phase velocity changes somewhat as the angle of incidence
changes, but this is due to the same mechanism as explained above for the
differentiator with length equal to 1.

The group velocity measures the speed of energy transport and is defined
by
c /ey = (dw/dk)/ey . (23)

For a homogeneous medium c,/c, = 1.0.

Using equation (16) in equation (23) leads to

o fco = [(1/AX)SIN@)B + (1/82)cos@O)CIVIk/K? + (kK2 ,  (24)
where
m=2—1
B = ). mA,sin[mM/sin(0)] ,
m=1
and >
m=2[-1

C = Z mA,sinfmM/cos(0)] ,

m=1

Equation (24) is the relative group velocity as a function of propagation
angle 0 and the number of grid points per wavelength. The group velocity
measures the speed of physical energy transport, and is a better measure of the
quality of a finite-difference scheme than the phase velocity.

Figs. 6 and 7 show the relative group velocity in the case of a simple
differentiator with length equal to 1, while Figs. 8 and 9 show the relative group
velocity in the case of optimized differentiators with length equal to 8. Note the
change of scale on the vertical axis of Figs. 8 and 9 relative to Figs. 6 and 7.
From the figures it is seen that the error in group velocity is somewhat larger
than the error in phase velocity, but behaves in general as the error in phase
velocity. The differentiator with length equal to 1 can not be used with any
degree of confidence below approximately 15-20 grid points per wavelength,
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while the long differentiator with length equal to 8 can be used for all values of
grid points per wavelength of practical interest.
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Fig. 8. Relative group velocity using differentiators with length / = 8 and  angle of propagation
6 = 0 (left) and 0 = 15 (right).
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Fig. 9. Relative group velocity using differentiators with length / = 8 and  angle of propagation
6 = 30 (left) and 6 = 45 (right).

NUMERICAL EXAMPLES

In this section simple numerical examples showing solutions of equation
(11) for simple acoustic and visco-acoustic modeis are shown.

First a homogeneous model is considered. A source with Gaussian time
dependence was positioned in the center of the model, which had a lateral extent
of 400 m in the horizontal and vertical directions. A grid interval equal to 4 m
was used, implying that the number of grid points in each direction was 200.
The wave velocity was chosen equal to 2000 m/s and the maximum frequency
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was 62.5 Hz. Equation (11) was solved for 33 different frequencies, and the
pressure as a function of time was obtained by Fourier transformation. To avoid
numerical problems with aliasing along the time axis, we used the concept of
complex frequency (Mallick and Frazer, 1987). The numerical solution of the
linear system of equations given by (11) was obtained using a standard
off-the-shelf equation solver designed for sparse systems using an LU
decomposition technique. No attempt was made to exploit the inherent simple
structure of the matrix L. Fig. 10 shows the computed pressure in the
homogeneous model at six different instants of time. As a check on the
numerical solution, Fig. 11 shows the analytical solution plotted at the same
time instants.

Fig. 12 shows the numerical solution for a visco-acoustic medium
corresponding to a standard linear solid. (Ben-Menahem and Singh, 1981). The
phase velocity is in this case complex and given by

2 = [c2 + (ww)22 + iwlw(c2 — AV + (Ww)] . @6

Here ¢, = 2000 m/s and c,, = 2500 m/s are the phase velocities in the limit of
zero and infinite frequencies, respectively. w, is a reference frequency and is
equal to 250 s~!. Fig. 12 shows that the wave propagating in the visco-acoustic
medium is clearly attenuated and dispersed compared with the purely acoustic
wave shown in Fig. 11.

Fig. 13 shows the pressure at six different instants of time using the
inhomogeneous visco-acoustic model shown in Fig. 14. The grid intervals in the
x- and z-directions were equal to 4 m, while the maximum frequency was
62.5Hz. The number of frequencies was equal to 33. The density was kept
constant. In Fig. 15 the pressure is displayed as a function of time at six
different depths. Figs. 13 and 15 show quite clearly how the pressure wave field
is reflected and distorted by the inhomogeneous model.

CONCLUSIONS

A frequency domain finite-difference scheme for acoustic wave
propagation has been given. The scheme uses optimized differentiators and is
more effective than a classical scheme using unoptimized differentiators. The
scheme is implicit and requires the solution of a large system of linear
equations. The error analysis reveals that the classical scheme requires at least
15-20 grid points per wavelength to achieve an accuracy comparable with the
scheme using optimized differentiators. The optimized scheme is most accurate
when the number of grid points is less than approximately 10. Above this point
the accuracy decreases in a systematic way as the number of grid points per
wavelength is increased.
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Fig. 10. Numerical solution of the pressure for the homogeneous model without attenuation at times F
(a) 16 ms, (b) 48 ms, (c) 96 ms, (d) 112 ms, (e) 144 ms, and (f) 200 ms. (:
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Fig. 11. Analytical solution of the pressure for the homogeneous model without attenuation at times
(a) 16 ms, (b) 48 ms, (¢) 96 ms, (d) 112 ms, (¢) 144 ms, and (f) 200 ms.
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Fig. 12. Numerical solution of the pressure for the homogeneous model including attenuation at
times (a) 16 ms, (b) 48 ms, (c) 96 ms, (d) 112 ms, (e) 144 ms, and (f) 200 ms.
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The linear equations were solved using a standard LU decomposition
technique designed for sparse systems. This method has the significant
advantage that obtaining the solutions for additional source positions (i.e.,
different right-hand side vectors) is computationally inexpensive once the LU
decomposition of the L-matrix has been performed.

Numerical examples showed that solutions of the linear systems of
equations can be obtained in a straightforward way, even for models of
reasonable size. Also, introduction of absorption via complex wave velocity is
straightforward and easy to accomplish.

A new linear system must be solved for each frequency, but since these
are almost computationally independent, solutions of these systems could occur
in parallel. The parallel architecture of many new computer systems is very well
suited for this type of task, making efficient frequency domain finite-difference
modeling possible.

cp = 2000m/s

¢ = 2500m/s

Fig. 14. Inhomogeneous visco-acoustic model.
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Fig. 15. Numerical solution of the pressure for the inhomogeneous visco-acoustic model at depths
(a) 240 m, (b) 360 m, (c) 480 m, and (d) 680 m. (e) and (f) show the numerical solution at depths

480 m and 680 m where the amplitudes have been scaled by a factor of 10.
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